Introduction to ONETEP

Chris-Kriton Skylaris

c.skylaris@soton.ac.uk

UNIVERSITY OF Southampton
School of Chemistry
Outline

• Overview of basic concepts
 – OBDMM approaches
 – NGWFS, density kernel
 – Psinc basis set
 – FFT box
 – Linear-scaling examples
 – Parallel scaling

• Functionality available
• Compilation requirements
• Running a simple calculation
Optimal basis density matrix minimization (OBDMM) approaches
(S. Goedecker, Rev. Mod. Phys., 71, 1085 (1999))

Efficient linear-scaling:

• Use a small basis set of localised non-orthogonal functions to express all quantities to obtain sparse matrices (e.g. Hamiltonian matrix, overlap matrix, etc) with modest memory requirements
• Apply your chosen density matrix minimisation algorithm(s), using efficient sparse matrix algebra techniques

Large basis set accuracy:

• Make sure that the small basis set is “optimal”, by determining it variationally, in situ
• Therefore the small basis set is not fixed (hence it is not a basis set) but it is expressed in terms of a very detailed, highly accurate large basis set
The ONETEP approach

\[\rho(r, r') = \sum_n f_n \psi_n(r) \psi^*_n(r') \]

ONETEP is an **OBDMM** method

- The NGWFs are the “small basis set”
- Each NGWF is expanded in a “large” basis set of psinc functions (this is the actual basis set)

Density matrix localisation

\[\rho(r, r') = \sum_{\alpha\beta} \phi_\alpha(r) K^{\alpha\beta} \phi_\beta(r') \]

- Impose spatial cut-offs:
 - NGWFs confined to spherical regions
 - Sparse density kernel \(K \) by truncation
NGWF optimisation

ONETEP spring school, 13-16 April 2010

NGWF optimisation

BaTiO₃

Basis set: psinc functions

• “Periodic Cardinal Sine” or Lagrange-mesh functions:
 - Real linear combinations of plane waves
 - Localised
 - Orthogonal

Psinc basis energy cut-off

Basis set variational approaches:

ONETEP spring school, 13-16 April 2010
FFT box technique

simulation cell
FFT box technique

Linear scaling: DNA

Linear-scaling: Amyloid fibrils

Structures of the amyloid fibril kindly provided by the authors of
True linear scaling

Parallel scaling: carbon nanotubes

- 9600 atoms
- Commodity cluster of 24 dual socket dual core Opteron nodes

ONETEP spring school, 13-16 April 2010
Functionality

- LDA (Ceperley-Alder-Perdew-Zunger, Vosko-Wilk-Nusair) and GGAs (Perdew-Wang ’91, Perdew-Burke-Ernzerhof, revPBE, RPBE, BLYP, XLYP)
- Spin polarisation
- Forces
- Geometry optimisation
- Electronic structure analysis
- Visualisation
- Modified Coulomb interactions (Cut-off Coulomb and Martyna-Tuckerman approaches)
Compiling ONETEP

Simple multi-platform build system, needs:

• Fortran 95 compiler
• BLAS and LAPACK numerical libraries
• FFT library: vendor-supplied or FFTw
 – www.fftw.org
• MPI library for parallel version
 – www.lam-mpi.org
Running ONETEP

• Parallel computer
 – Minimum 2 GB per processor (core)
 – Typically distribute 10-100 atoms per processor
 – Cross-over >100 atoms

• Prepare input file: free format
 – Documentation at www.onetep.org

• Supply pseudopotential files (.recpot format)
Input file

• Keywords of different types:
 – Integer
 – Boolean
 – String
 – Real
 – Physical (real + unit)
 – Block data e.g. atomic positions, delimited by `%block` and `%endblock`

• Atomic units by default (hartree and bohr)
• Beware older keywords e.g. `kernel_cutoff`
Example input file: formaldehyde

! Example input file for the ONETEP program
! Formaldehyde molecule

cutoff_energy 600 eV

%block lattice_cart
 48.00 0.00 0.00
 0.00 48.00 0.00
 0.00 0.00 48.00
%endblock lattice_cart

%block positions_abs
 O 24.887507 23.896975 22.647313
 C 27.731659 23.667449 22.643306
 H 28.655157 21.721170 22.637547
 H 28.955467 25.440371 22.646039
%endblock positions_abs

%block species
 O O 8 4 6.5
 C C 6 4 6.5
 H H 1 1 6.5
%endblock species

%block species_pot
 O oxygen.recpot
 C carbon.recpot
 H hydrogen.recpot
%endblock species_pot

ONETEP spring school, 13-16 April 2010
ONETEP calculation outline

• Initialisation phase:
 – Construct initial NGWFs (STOs or PAOs)
 – Construct initial charge density (atomic superposition) and effective potential
 – Construct initial Hamiltonian
 – Obtain initial (non-self-consistent) density kernel using canonical purification
 – Refine initial density kernel (self-consistently) using penalty functional
ONETEP calculation outline continued

• Main optimisation phase:
 – Combination of nested self-consistent loops
 – Outer loop optimises the NGWFs (density kernel fixed)
 – Inner loop optimises the density kernel (NGWFs fixed) using DMM approaches

• Final analysis phase:
 – Calculate forces
 – Write out potentials, densities, NGWFs for plotting
 – Mulliken population analysis
 – Diagonalisation yields wave functions, DOS etc.
Example output file: formaldehyde

View h2co.out
More information

• www.onetep.org

• Scientific highlight of the month:
 – Ψ_k Newsletter 72, December 2005
 – http://psi-k.dl.ac.uk/